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1 Definitions

Let us define Lie Algebra sl(2,C). Formally, it is a 3-dimensional complex Lie Algebra of all 2× 2 complex
matrices with trace zero. Let us recall the commutator for Lie algebras:

[x, [y, z]] = [[x, y], z] + [y, [x, z]]

This commutator is skew-symmetric:
[x, y] = −[y, x]

Let us construct the standard basis:

E =

(
0 1
0 0

)
, F =

(
0 0
1 0

)
, H =

(
1 0
0 −1

)
As an aside, I note that su(2) ⊗ C ∼= sl(2,C), where we ‘complexify’ su(2) by extending the scalars from R
to C, although they tend to use different bases. su(2) is a Real Lie algebra of unitary 2x2 traceless matrices
with complex entries, but the linear combinations allowed within elements of su(2) must use real scalars.
Here, we mark how the commutator operates on the basis of sl(2,C).

[E,F ] = H, [H,E] = 2E, [H,F ] = −2F

Recall that a representation of sl(2,C) will be a vector space V with homomorphism ρ : sl(2,C) → gl(V ).
gl(V ) is the Lie Algebra of all linear transformations on vector space V , with Lie bracket [A,B] = AB−BA.

Take some vector v ∈ V , and some x ∈ sl(2,C). We will write xv instead of ρ(x)v.
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2 Representations of sl(2,C)
Theorem. Any representation of sl(2,C) is completely reducible.

Proof. We will sketch this proof. Due to a lemma that I won’t prove, we know that categories of complex
representations of real Lie algebras and their ’complexifications’ are equivalent. Since sl(2,C) is the complex-
ification of su(2), their representations are the same. We know from other results of representation theory
that representations of su(2) are the same as representations of the compact Lie Group SU(2). One final
theorem possible with Haar measure on compact Lie groups is that any finite-dimensional representation
of a compact Lie group is unitary and thus completely reducible. We conclude that sl(2,C) is completely
reducible.

For this lecture, we will classify irreducible representations.

Definition. Let V be a representation of sl(2,C). A vector v ∈ V is a vector of weight λ ∈ C if it is an
eigenvector for H with eigenvalue λ.

Hv = λv

Denote the subspace of vectors of weight λ by V [λ] ⊂ V . This subspace is importantly not a subrep-
resentation of V as we will later see. We begin with two lemmas.

Lemma.
EV [λ] ⊂ V [λ+ 2]

FV [λ] ⊂ V [λ− 2]

Proof. Take some v ∈ V [λ]. We want to show that Ev ∈ V [λ+ 2].

Note that [H,E] = HE − EH, so [H,E]v = HEv − EHv, or

H(Ev) = [H,E]v + EHv = 2Ev + λEv = (λ+ 2)Ev

∴ Ev ∈ V [λ+ 2]

Now, show that Fv ∈ V [λ− 2]. Using the same logic as before,

HFv = [H,F ]v − FHv = −2Fv − λFv = (λ− 2)Fv

∴ Fv ∈ V [λ− 2]

Theorem. Every finite-dimensional representation V of sl(2,C) can be written in the form

V =
⊕
λ

V [λ]

We call this the weight decomposition of V .

Proof. First, we assume that V is irreducible since every finite-dimensional representation of sl(2,C) is com-
pletely reducible. Define subspace V ′ =

∑
λ V [λ] ⊂ V , spanned by eigenvectors of H with weight λ.

Eigenvectors with different eigenvalues are linearly independent, so we can take the direct sum to be equiv-
alent to V ′:

V ′ =
⊕
λ

V [λ]

We know that V ′ is invariant under the action of H because that’s where we get our eigenvectors v, and our
lemma demonstrated that it is also invariant under the action of E and F . V ′ is thus a subrepresentation of V .

We know that V ′ is nonzero due to the fact that H has at least one eigenvector. Since we assumed that V is
irreducible, we conclude that V ′ = V . This means that every vector in our representation is an eigenvector
for H, and we know how our basis vectors E and F act on v.
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3 Classification of Irreducible Finite-Dimensional Representations

Now, assume that V is an irreducible representation of sl(2,C), and take a ’maximal’ weight λ of V :

Re λ ≥ Re λ′

for every weight λ of V . We call this the highest weight of V . The vectors v ∈ V [λ] will be the highest
weight vectors.

Lemma. Let v ∈ V [λ] be a highest weight vector in V .

1. Ev = 0

2. If vk = Fk

k! v, k ≥ 0, then

(a) Hvk = (λ− 2k)vk

(b) Fvk = (k + 1)vk+1

(c) Evk = (λ− k + 1)vk−1, k > 0

Proof. Since Ev ∈ V [λ+ 2], but λ is a highest weight, we know that V [λ+ 2] = 0 =⇒ Ev = 0.

I will only prove the last formula by induction using the previous results. For k = 1, we note that

Ev1 = E(Fv) = [E,F ]v + FEv = hv + 0 = λv ✓

Assume this holds for k, show that it holds for k + 1:

Evk+1 =
1

k + 1
EFvk =

1

k + 1
(Hvk + FEvk)

=
1

k + 1

(
(λ− 2k)vk + (λ− k + 1)Fvk−1

)
=

1

k + 1
(λ− 2k + (λ− k + 1)k)vk = (λ− k)vk = (λ− (k + 1) + 1)vk+1−1

Lemma. Let λ ∈ C. Define Mλ to be the infinite-dimensional vector space with basis v0, v1, . . .

1. With Ev0 = 0, we can define on Mλ the structure of an infinite-dimensional representation of sl(2,C).

2. If V is an irreducible finite-dimensional representation of sl(2,C) which contains a non-zero highest
weight vector of highest weight λ, then V = Mλ/W for some subrepresentation W.

Proof. I skip the proof for this lecture.

Theorem. For any n ≥ 0, let Vn be the finite-dimensional vector space with basis v0, v1, . . . , vn. Define the
action of sl(2,C) as follows:

Hvk = (n− 2k)vk

Fvk = (k + 1)vk+1, k < n; Fvn = 0

Evk = (n+ 1− k)vk−1, k > 0; ev0 = 0

Then, Vn is an irreducible representation of sl(2,C). This is the irreducible representation with highest
weight n.

For n ≥ m, representations Vn and Vm are non-isomorphic.

Every finite-dimensional irreducible representation of sl(2,C) is isomorphic to one of the representations Vn.
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Proof. Consider Mλ from above. If λ = n is a non-negative integer, consider the subspace M ′ ⊂ Mn spanned
by vn+1, vn+2, . . . . Then this is a subrepresentation stable under H and F (by the definition of how we set
up v as the highest weight vector).

The only nontrivial relation to check is that Evn+1 ∈ M ′:

Evn+1 = (n+ 1− (n+ 1))vn = 0

We can create a quotient space Mn/M
′ which is a finite-dimensional representation of sl(2,C), with basis

v0, . . . , vn with the action of sl(2,C) given above.

Any subrepresentation must be spanned by some subset of v0, v1, . . . , vn, but every subrepresentation then
generates the entire representation Vn under the action sl(2,C). We conclude that Vn is an irreducible
finite-dimensional representation of sl(2,C), where dimVn = n + 1 and hence not isomorphic to Vm where
n ̸= m.

Now, we must show that every irreducible representation is of the form Vn. Let V be an irreducible repre-
sentation of sl(2,C) and let v ∈ V [λ] be a highest weight vector. We then know that V is a quotient of Mλ

from our previous lemma. Put differently, the vectors vk = fk

k! v span it.

The vk’s all have different weights, and so if they are non-zero they must be linearly independent. We
know that V is finite-dimensional on the otherhand and so only finitely many of the vi are non-zero in
Mλ. We take n be the maximual such that vn ̸= 0, which means that vn+1 = 0. In this case, v0, . . . , vn are
all non-zero and have different weights which means that they are linearly independent and form a basis in V .

vn+1 = 0 =⇒ Evn+1 = 0. We also have Evn+1 = (λ − n)vn, which implies that λ = n is a non-negative
integer and is of the form outlined above.

Some pretty immediate and beautiful corollaries are as follows:

Corollary. Let V be a finite-dimensional complex representation sl(2,C).

1. V admits a weight decomposition with integer weights, and highest weight n:

V =
⊕
n∈Z

V [n]

2. dim V [n] = dimV [−n], and for n ≥ 0, the maps

En : V [n] → V [−n]

Fn : V [−n] → V [n]

are isomorphic.
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